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Proliferating cell nuclear antigen (PCNA) monomers assemble to form a ring-shaped clamp 

complex that encircles duplex DNA. PCNA binding to other proteins tethers them to the DNA 

providing contacts and interactions for many other enzymes essential for DNA metabolic 

processes. Most eukarya and euryarchaea have only one PCNA homolog but Thermococcus 

kodakarensis uniquely has two, designated PCNA1 and PCNA2, encoded by TK0535 and 

TK0582, respectively. Here, we establish that both PCNA1 and PCNA2 form homotrimers that 

stimulate DNA synthesis by archaeal DNA polymerases B and D and ATP hydrolysis by the 

replication factor C complex. In exponentially growing cells, PCNA1 is abundant and present at 

an ~100-fold higher concentration than PCNA2 monomers. Deletion of TK0582 (PCNA2) had no 

detectable effects on viability or growth whereas repeated attempts to construct a T. kodakarensis 

strain with TK0535 (PCNA1) deleted were unsuccessful. The implications of these observations 

for PCNA1 function and the origin of the two PCNA-encoding genes in T. kodakarensis are 

discussed.
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Introduction

In archaea and eukarya monomers of proliferating cell nuclear antigen (PCNA) assemble to 

form a ring-shaped trimeric clamp complex that encircles duplex DNA and is essential for 

many DNA metabolic processes (Jeruzalmi et al. 2002; Indiani and O’Donnell 2006; Kelch 

et al. 2012). The PCNA clamp does not assemble autonomously but is loaded onto DNA by 

the replication factor C (RFC) clamp loader complex. RFC recognizes the 3′ end of a single-

strand/duplex DNA (primer–template) junction and uses the energy of ATP hydrolysis to 

assemble the PCNA ring around the primer (Jeruzalmi et al. 2002; Kelch et al. 2012; Yao 

and O’Donnell 2012). PCNA was first reported as a processivity factor for replicative DNA 

polymerases but subsequent studies have established that both archaeal and eukaryal PCNAs 

also associate with, and modulate the activities of many other proteins involved in nucleic 

acid metabolic transactions (Vivona and Kelman 2003).

There are three major archaeal lineages, the Euryarchaeota, Crenarchaeota and 

Thaumarchaeota (Brochier-Armanet et al. 2008) and based on genome and metagenome 

sequencing members of the euryarchaeal and thaumarchaeal lineages have only one PCNA 

homolog whereas Crenarchaea have three PCNA homologs that co-assemble to form active 

heterotrimeric complexes in vitro (Spang et al. 2010; Pan et al. 2011a). Most archaeal 

genomes also encode two RFC homologs, designated the RFC large (RFC-L) and small 

(RFC-S) subunits, that assemble to form a pentameric complex that contains one RFC-L and 

four RFC-S subunits (Chia et al. 2010; Ishino and Ishino 2012).

Thermococcus kodakarensis is a genetically tractable hyperthermophilic heterotroph (Atomi 

et al. 2004) that has become a model species for studies of archaeal biology (Hileman and 

Santangelo 2012) but is unique, as an euryarchaeon, in having two PCNA homologs, 

designated PCNA1 and PCNA2, encoded by TK0535 and TK0582, respectively. Previous 
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studies established that both genes are expressed in vivo (Li et al. 2010; Kuba et al. 2012) 

and that the encoded proteins assemble in vitro to form homotrimeric rings (Ladner et al. 

2011; Kuba et al. 2012). Here, we report that both PCNA homologs are functional, with 

similar biochemical properties in vitro. However, whereas PCNA1 is abundant in vivo and is 

apparently essential for viability, PCNA2 is present at an ~100-fold lower concentration in 

growing cells and deletion of TK0582 had no discernible effects on growth or viability.

Materials and methods

Protein expression and purification

PCNA1 and PCNA2, the RFC complex and DNA polymerase B (PolB) were purified as 

previously described (Ladner et al. 2011; Chemnitz Galal et al. 2012). The gene (TK1902) 

encoding the small subunit of DNA polymerase D (DP1) was PCR amplified from genomic 

DNA and cloned into pET-21a (Novagen) to generate pET-TK1902. The gene (TK1903) 

encoding the large subunit of PolD (DP2) without the intein was cloned by GeneArt into 

pET-21a (Novagen) to generate pET-TK1903. The PolD sub-units encoded by these 

plasmids have C-terminal His6-tags and so were purified, after expression in Escherichia 

coli BL21 DE3 Rosetta cells, by Ni2+-affinity chromatography column as previously 

described for the purification of PolB (Ladner et al. 2011). Following elution from the Ni2+-

affinity column, the proteins were dialyzed against buffer containing 50 mM Tris–HCl (pH 

8.0), 500 mM NaCl, 0.5 mM EDTA, 2 mM DTT and 10 % glycerol (v/v). The PolD 

complex was formed by incubation of the two proteins mixed in a 1:1 molar ratio at 25 °C 

for 1 h.

Gel-filtration analysis

Aliquots (200 μg) of PCNA1 or PCNA2 and the RFC complex in 200 μl buffer containing 

25 mM Tris–HCl (pH 7.5), 500 mM NaCl and 10 % glycerol (v/v) were fractionated through 

a Superdex-200 gel-filtration column (HR10/30; GE Healthcare) pre-equilibrated with 25 

mM Tris–HCl (pH 7.5), 500 mM NaCl and 10 % glycerol (v/v) at 22 °C. The proteins 

present in fractions (15 μl) were separated by electrophoresis through a 10 % SDS-PAGE 

and visualized by staining with Coomassie brilliant blue (R250).

Light scattering of RFC

The molecular mass of the RFC complex was determined using 100 μg of protein dissolved 

in 20 μl of 25 mM Tris–HCl (pH 7.5), 50 mM NaCl and 10 % glycerol as previously 

reported for the PCNA proteins (Ladner et al. 2011). A 1200 series HPLC system (Agilent 

Technologies) with a Shodex KW-802.5 or a Shodex KW-804 column (Showa Denko K.K.) 

was used. The flow rate was 0.5 ml/min, in a solution containing 25 mM Tris–HCl (pH 7.5), 

500 mM NaCl and 10 % glycerol (v/v). Light scattering was measured with a miniDawn 

Treos (Wyatt Technology) and the protein concentration was measured with an Optilab rEX 

differential refractometer (Wyatt Technology).

ATPase assays

The ATPase activity of RFC was assayed in reaction mixtures (15 μl) that contained 25 mM 

Tris–HCl (pH 8.0), 5 mM MgCl2, 1 mM DTT, 100 μg/ml BSA, 1.5 nmol of [γ-32P]ATP 
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(3,000 Ci/mmol), 0.5 pmol of RFC and 0.01, 0.05, 0.1, 0.25 or 0.5 pmol of PCNA1 or 

PCNA2 (as trimers) as indicated in the figure legends, with or without 50 pmol of primed 

substrate formed by annealing oligo-nucleotides with the sequences 5′-GCGGCGAGTCCA 

GCTCAGGAGCTCGCGCCG and 5′-TTTGTTTGTTTGT TT 

GTTTGTTTGTTTGTTTGTTTGCGGCGCGAGCTC CTGAGCTGGACTCGCCGC. After 

incubation at 70 °C for 1 h, an aliquot (1 μl) of the reaction mixture was spotted onto a 

polyethyleneimine cellulose thin layer plate. ATP and Pi were separated by chromatography 

in 1 M formic acid containing 0.5 M LiCl, and the amount of ATP hydrolysis was calculated 

based on phosphorimaging quantification. The ATPase assays were repeated three times, 

and the averages of the results obtained with standard deviations are reported.

To establish the rate of ATP hydrolysis by RFC, reaction mixtures (45 μl) that contained 25 

mM Tris–HCl (pH 8.0), 5 mM MgCl2, 1 mM DTT, 100 μg/ml BSA, 4.5 nmol [γ-32P]ATP 

(3,000 Ci/mmol), 0.5 pmol RFC and 0.05 pmol PCNA were incubated at 70 °C, with or 

without 50 pmol of the primed substrate described above. Aliquots (3 μl) of the reaction 

mixture were removed after 0, 5, 10, 15, 30 and 45 min, mixed with 1 μl of 0.5 M EDTA, 

and the extent of ATP hydrolysis determined using polyethyleneimine cellulose thin layer 

chromatography as described above. The assays were repeated three times, and the averages 

of the results obtained with standard deviations are reported.

DNA replication assay

Elongation assays of singly primed M13 DNA templates with PolB were performed as 

reported previously (Ladner et al. 2011) in reaction mixtures (20 μl) containing 40 mM Tris–

HCl (pH 8.0), 250 mM NaCl, 1.5 mM DTT, 100 μg/ml BSA, 10 mM Mg-acetate, 2 mM 

ATP, 100 μM each of dTTP, dCTP and dGTP and 20 μM [α-32P]dATP and 10 fmol singly 

primed M13mp18. Elongation assays of singly primed M13 DNA templates with PolD were 

performed in reaction mixtures (20 μl) containing 30 mM Tris–HCl (pH 8.0), 100 mM NaCl, 

2.5 mM DTT, 100 μg/ml BSA, 7.5 mM Mg-acetate, 1.5 mM ATP, 150 μM each of dTTP, 

dCTP and dGTP and 20 μM [α-32P]dATP and 20 fmol singly primed M13mp18.

The proteins used in the reaction are indicated in the figure legends. Following incubation at 

70 °C for 20 min the reactions were stopped by the addition of EDTA to final concentration 

of 10 mM. The products were separated by electrophoresis through a 1.1 % alkaline agarose 

gel. Total nucleotide incorporation was quantified by liquid scintillation from 4 μl aliquots 

of each reaction mixture.

Construction of T. kodakarensis intermediate and deletion strains

The procedures and selections used to generate intermediate and markerless deletion strains 

from T. kodakarensis TS517 have been described in detail (Pan et al. 2011b). Briefly, 

plasmid pZLE032 (Fig. S2) and pZLE033 DNAs (Fig. S1) were used as donor DNAs to 

transform T. kodakarensis TS517 (ΔpyrF; ΔtrpE::pyrF; ΔTK0664) with transformants 

selected by growth on plates lacking tryptophan. Colonies containing cells in which a double 

crossover had integrated pZLE033 DNA into the T. kodakarensis genome at the desired 

locus were identified by diagnostic PCR. Suspensions of these cells were spread on plates 

containing 6-methyl purine (6MP) and the genome structure in a spontaneous 6MP-resistant 
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isolate (6MPR), designated T. kodakarensis TS-ZLE033 (ΔTK0582) was confirmed by 

diagnostic PCR and Southern blotting. Tryptophan-independent transformants of T. 

kodakarensis TS517 were readily obtained by transformation with ZLE033 DNA (Fig. S1) 

but no such transformants were obtained with pZLE032 (Fig. S2) as the donor DNA.

Southern blot confirmation of genome structures

Southern blots were performed as described (Santangelo et al. 2007), using 3 μg of BglII-

digested T. kodakarensis TS517 and T. kodakarensis TS-ZLE033 genomic DNAs per lane. 

Probes complementary to TK0582 and TK0535 were generated by PCR amplification using 

primer pairs with the sequences GTACTTCAGAAGCAGTGGTATGTG and GC 

TTGCAAGGAGCAGGGATACGC (see Fig. S1), and GAC 

CAGGAAGGGCCTCTTCTATCAG and CTCGCGGCTT GGGAGGTTGCGATAG (see 

Fig. S2).

Western-blot quantification of PCNA1 and PCNA2 concentrations in vivo

Cultures (50 ml) of T. kodakarensis KW128 were grown, as previously reported (Santangelo 

and Reeve 2010), to an OD600 of 0.5–0.6 that contained 2–5 × 108 cells/ml. The cells were 

harvested by centrifugation at 3,000 rpm for 20 min at 23 °C, the cell pellet resuspended in 

500 μl 25 mM Tris–HCl (pH 8.0), 500 mM NaCl and 10 % glycerol, and the cells ruptured 

by sonication. The lysates were clarified by centrifugation at 13,000 rpm for 10 min at 4 °C 

and known amounts of recombinant T. kodakarensis PCNA1 and PCNA2 were subjected to 

electrophoresis through 12 % SDS-PAGE in lanes adjacent to aliquots of the clarified cell 

extracts. The gels were electroblotted onto a nitrocellulose membrane (Protran BA83 0.2 μm 

Nitrocellulose membrane, Whatman Inc.).

Western analysis was performed using a combination of guinea pig polyclonal antibodies 

(Cocalico Biologicals Inc) generated against the recombinant PCNA proteins and rabbit 

anti-guinea pig antibodies coupled to horse-radish peroxidase (Sigma-Aldrich); blots were 

developed using enhanced chemiluminescence (ECL, GE Healthcare). The intensity of each 

band was quantified using ImageQuant TL (GE Healthcare). The experiment was repeated 

three times. The average results of three experiments were used to calculate the in vivo 

levels of the PCNA proteins.

Results

PCNA1, PCNA2 and RFC oligomerization

Homotrimers of T. kodakarensis PCNA1 and PCNA2 assemble to form very similar ring-

shaped structures but differences at the subunit-interaction sites (Ladner et al. 2011). Based 

on light scattering assays, the PCNA1 and PCNA2 homotrimers have different in vitro 

stabilities, with only PCNA2 forming stable complexes at low concentrations (Ladner et al. 

2011). Size exclusion chromatography has confirmed the light scattering results. PCNA1 

(Mr = 29.5 kDa) eluted from the column as a broad peak correlating with a protein with a 

molecular mass of ~62 kDa (Fig. 1a, b), most consistent with PCNA1 solutions containing 

an equilibrium mixture of dimers (58.1 kDa) and trimers (87.2 kDa). The elution profile of 

PCNA2, in contrast, contained two discrete peaks revealing assembly into stable complexes 
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with molecular masses of ~86 kDa and ~178 kDa (Fig. 1c, d), consistent with trimeric (87.8 

kDa) and hexameric (175.6 kDa) complexes, respectively. There is evidence that human 

PCNA may also form hexameric ring structures (Naryzhny et al. 2005).

Based on gel-filtration analyses, T. kodakarensis RFC (Fig. 1e, f) monomers assembled to 

form a single complex with molecular mass of ~208 kDa. As with most other archaeal RFCs 

investigated (Chia et al. 2010; Ishino and Ishino 2012), the T. kodakarensis RFC complex 

therefore most likely contains one RFC-L (58.1 kDa) and four RFC-S (37.2 kDa) subunits, a 

pentameric complex with a molecular mass of 206.9 kDa. Light scattering assays were also 

consistent with this result, indicating that the T. kodakarensis RFC complex had a molecular 

mass of ~203 kDa and therefore the predicted pentameric structure.

Both PCNA1 and PCNA2 stimulate DNA synthesis by T. kodakarensis PolB and PolD

PCNAs increase the processivity of DNA polymerases (Jeruzalmi et al. 2002). The ability of 

PCNA1 and PCNA2 to stimulate DNA synthesis by T. kodakarensis PolB (encoded by 

TK0001) and PolD (encoded by TK1902 and TK1903) was therefore measured using a 

primer extension assay on a M13 DNA template. Primer extension by PolB was completely 

dependent on the presence of RFC plus either PCNA1 or PCNA2, and the rate of DNA 

synthesis increased when the PCNA1 or PCNA2 concentration was increased (Fig. 2a, lanes 

9–11 and 6–8). At the same low PCNA concentrations, the extension products generated 

with PCNA1 were shorter than those generated with PCNA2 (Fig. 2a, compare lanes 10 and 

11 to lanes 7 and 8), most likely reflecting the lower stability of PCNA1 versus PCNA2 

trimers at low solution concentrations [Fig. 1a, b, (Ladner et al. 2011)]. In contrast to PolB, 

PolD had polymerase activity in the absence of a PCNA (Fig. 2b lanes 2, and 9) but, with 

RFC and either PCNA1 or PCNA2 present, the primer extension activity of PolD was 

stimulated and more full-length products were synthesized (Fig. 2b compare lanes 3 and 6 to 

lane 2; lanes 10 and 11 to lane 9). These results differ from those reported by Kuba et al. 

(2012), in that both PCNA1 and PCNA2 stimulated PolD activity (Fig. 2b) whereas only 

PCNA1 was reported to do so by Kuba et al. (2012). This discrepancy presumably reflects 

differences in the experimental conditions and/or the proteins purified by Kuba et al. (2012) 

without a tag, and here with His6-tags.

Both PCNA1 and PCNA2 stimulate the ATPase activity of RFC

The ATPase activity of other archaeal and eukaryotic RFCs is stimulated by the presence of 

PCNA plus a primed DNA template (Kelman and Hurwitz 2000; Cann et al. 2001). 

Consistent with these results, both PCNA1 (Fig. 3a) and PCNA2 (Fig. 3b) stimulated ATP 

hydrolysis by T. kodakarensis RFC when incubated in the presence of a primed DNA 

substrate. In both cases, the extent of ATP hydrolysis was dependent on the PCNA 

concentration, but the rate of ATP hydrolysis was ~3-fold higher with PCNA1 than with 

PCNA2 (Fig. 3c).

PCNA1 is sufficient for T. kodakarensis viability

As both PCNA proteins stimulated PolB and PolD (Fig. 2) and RFC ATPase (Fig. 3), it 

seemed possible that either would be sufficient for T. kodakarensis viability. We therefore 

tried to construct stains with the PCNA1- or PCNA2-encoding genes, TK0535 and TK0582, 
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respectively, individually deleted. T. kodakarensis TS–ZLE033 (ΔTK0582) was readily 

obtained with the genome structure confirmed by diagnostic PCR and Southern blots, as 

illustrated in Fig. 4a and b. The gene encoding PCNA2 is located in a region of the 

chromosome thought to be of a viral origin and the entire region can also be deleted from the 

chromosome (Tagashira et al. 2013).

The strain in which TK0582 is deleted (ΔTK0582) had no detectable viability or growth 

defects consistent with the presence of PCNA1 alone being fully sufficient to support T. 

kodakarensis genome replication as was previously reported (Kuba et al. 2012). In contrast, 

however, despite repeated attempts using the same transformation procedure and selection, 

but with pZLE032 as the donor DNA (Fig. S2), we were unable to generate a strain with 

TK0535 deleted, as was previously reported (Kuba et al. 2012), suggesting that PCNA1 is 

essential for T. kodakarensis viability. The structure of plasmid pZLE032 and the gene 

organization surrounding TK0535 in the T. kodakarensis genome are illustrated in Figure 

S1.

PCNA1 is abundant in vivo

The concentrations of PCNA1 and PCNA2 in vivo were determined by quantitative 

Western-blot measurements (Fig. 5). PCNA1 was found to be abundant, with 5,000–10,000 

molecules present per cell, a concentration likely sufficient for stable trimer formation in 

vivo [Fig. 1a, (Ladner et al. 2011)]. The concentration of PCNA2, in contrast, was ~100-fold 

lower, with <60 molecules present per cell, below the minimum detectable amount. The low 

sensitivity of the antibodies and the low expression of PCNA2 prevent us from detecting the 

protein in the Western-blot analysis. Previous studies, however, with more sensitive 

antibodies detected the PCNA proteins in cell extract and estimated the presence of 10–30 

molecules of PCNA2 per cell (Kuba et al. 2012).

Possibly, our inability to delete TK0535 (PCNA1) reflected this low concentration of 

PCNA2 being insufficient for PCNA function in vivo and, to address this, we tried to 

increase PCNA2 synthesis in vivo by ectopic over-expression of TK0582 cloned into a 

replicating plasmid downstream from a strong constitutive promoter and by replacing the 

promoter of TK0582 with the promoter of the more highly expressed TK0535 (PCNA1). 

Neither procedure was successful. We were unable to isolate a strain in which TK0582 was 

over-expressed from a plasmid, and although many clones were obtained with the desired 

promoter substitution, in every strain investigated, sequencing revealed that the substituted 

TK0535 promoter had acquired inactivating mutations. It appears therefore that T. 

kodakarensis cells do not tolerate a higher intracellular concentration of PCNA2. The reason 

for this observation is not clear. It may be that PCNA2 can interact with the same proteins as 

PCNA1 but cannot perform all the activities of PCNA required for cell viability. Under this 

scenario, the extra PCNA2 may bind those essential factors, titrating them out, and thus 

prevent their interaction with PCNA1. When expressed normally this is not observed 

because PCNA2 expression is very low.
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Discussion

T. kodakarensis is the only Euryarchaeon currently known to have more than one PCNA 

homolog and deletion of TK0582 (PCNA2) has confirmed that T. kodakarensis, like all 

other Euryarchaea, can grow normally with only one PCNA. PCNA1 and PCNA2 have very 

similar biochemical activities, and could potentially have redundant roles in vivo, but at the 

low concentration present, PCNA2 alone was unable to support viability. Intriguingly, 

despite repeated attempts to address this, we were unable to generate a T. kodakarensis 

strain with a much higher intracellular abundance of PCNA2. Our inability to delete 

TK0535 does not provide definitive proof that PCNA1 is essential for viability but, in 

addition to its predominant abundance, additional details support the argument that PCNA1 

is normally the replicative PCNA in T. kodakarensis. In many archaeal genomes, the single 

PCNA-encoding gene is part of an operon that also contains a gene encoding a subunit of 

the GINS replication factor (Berthon et al. 2008; MacNeill 2010). TK0535 encodes PCNA1 

and TK0536 that encodes the GINS15 subunit are present in the same operon (Fig. S2). 

TK0582, in contrast, is not adjacent to a GINS-encoding gene but is within a region of the T. 

kodakarensis genome thought to be of a vestige of a viral infection (Fukui et al. 2005; 

Tagashira et al. 2013). As previously concluded for two of the three minichromosome 

maintenance (MCM) homologs in T. kodakarensis (Pan et al. 2011b; Ishino et al. 2011), 

PCNA2 was most likely therefore acquired as a component of a viral replisome. 

Furthermore, although the atomic structures of the PCNA1 and PCNA2 complexes are 

overall very similar, the details of the monomer–monomer interfaces are significantly 

different with PCNA1 interfaces more similar to those in other archaeal PCNA complexes 

(Ladner et al. 2011).

This report provides the quantification of PCNA in vivo in an Archaeon. Given the similar 

sizes of bacterial and archaeal genomes, their common circular structures and bidirectional 

replication from a single origin of replication, it seems unlikely that archaeal genome 

replication would require a much higher number of clamp complexes than bacterial genome 

replication. In Bacteria, the β-subunit of DNA polymerase is a structural and functional 

homolog of PCNA (Kelman and O’Donnell 1995; Jeruzalmi et al. 2002) although the β-

subunit is a polypeptide dimer whereas PCNA complexes are trimers (Kelman and 

O’Donnell 1995). E. coli has ~600 β-subunit monomers per cell allowing the assembly of 

~300 clamp complexes (Turner 1998). T. kodakarensis cells would therefore need to have 

~900 PCNA monomers for the assembly of a similar number of clamp complexes but, in 

fact, has substantially more, 5,000–10,000 per cell, given the Western-blot quantifications 

(Fig. 5). It is possible therefore that PCNA1 plays additional roles in T. kodakarensis 

although this monomer abundance may, in fact, simply be needed to direct and maintain 

stable trimerization in vivo.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Size exclusion chromatography of PCNA1, PCNA2 and RFC complexes. Solutions of a 
PCNA1, c PCNA2 and e RFC were subjected to Superdex-200 gel filtration. The proteins 

present in an aliquot (15 μl) of each fraction obtained were separated by electrophoresis 

through 10 % acrylamide-SDS gels and visualized by Coomassie Blue staining. The elution 

positions of thyroglobulin (Thy 669 kDa), gamma globulin (Gam 158 kDa) and ovalbumin 

(Ova 44 kDa) are indicated at the top of the figure. Control lanes contained a sample of the 

material loaded onto the gel-filtration column (L) and molecular mass standards (M). The 

position(s) at which the experimental samples eluted from the column are indicated (open 

squares; filled squares) relative to the mass standards in b PCNA1, d PCNA2 and f RFC
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Fig. 2. 
PCNA1 and PCNA2 stimulate primer extension by T. kodakarensis DNA polymerases B 

and D. a DNA elongation assay with PolB. Reaction mixtures (20 μl) containing 440 fmol of 

PolB, 430 fmol of RFC (as pentamers), 10 fmol of M13 primed template DNA, 

[α-32P]dNTP and PCNA1 or PCNA2, as indicated, were incubated for 20 min at 70 °C. An 

aliquot (4 μl) was removed and 32P incorporation measured to quantify the DNA 

synthesis. 32P-labeled DNA molecules in the remaining solution were separated by 

electrophoresis through alkaline 1.1 % (w/v) agarose gels and visualized, after gel drying, by 

autoradiography. b DNA elongation assay with PolD. Reaction mixtures (20 μl) containing 

500 fmol of RFC (as pentamers), 20 fmol of M13 primed template DNA, [α-32P]dNTP, 200 

or 400 fmol of PolD, as indicated, and 2, 20 or 200 fmol of PCNA1 or PCNA2, as indicated, 

were incubated for 20 min at 70 °C. An aliquot (4 μl) was removed and 32P incorporation 

measured to quantify the DNA synthesis. 32P-labeled DNA molecules in the remaining 
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solution were separated by electrophoresis through alkaline 1.1 % (w/v) agarose gels and 

visualized, after gel drying, by autoradiography
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Fig. 3. 
PCNA1 and PCNA2 stimulate ATP hydrolysis by T. kodakarensis RFC. ATPase assays 

were carried out in reaction mixtures that contained increasing amounts of a PCNA1 or b 
PCNA2 with (diamonds) or without (triangles) a primed DNA substrate. c The average 

values obtained for the rates of ATP hydrolysis by RFC determined in three separate 

experiments
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Fig. 4. 
Confirmation of the genome structure of T. kodakarensis TS-ZLE033 (ΔTK0582). a 
Electrophoretic separation of PCR amplicons generated from genomic DNA of T. 

kodakarensis TS517 and TS-ZLE033. The primers generated amplicons (450–500 bp) from 

within (I) TK0535 and (II) TK0582. The approximate locations of the primer pair I 

(TK0535-For and TK0535-Rev) used to generate the TK0535 amplicon indicated by arrows 

in Figure S2 and primer pair II (TK0582-For and TK0582-Rev) used to generate the 

TK0582 amplicon indicated by arrows in Figure S1. DNA size markers are shown in lane 5. 

b Southern blot analysis of genomic DNA from T. kodakarensis TS517 and TS-ZLE033. 

DNA molecules in aliquots (3 μg) of BglII-digested genomic DNA were separated by 

agarose gel electrophoresis, transferred to a membrane, denatured and allowed to hybridize 

to [32P]-labeled probe #1 (complementary to TK0582; see Fig. S1) or probe #2 

(complementary to TK0579; see Fig. S1). As shown, probe #1 did not hybridize to a defined 

restriction fragment in BglII digest of T. kodakarensis TS-ZLE033 genomic DNA consistent 

with the deletion of TK0582. The size of the restriction fragment that hybridized with probe 

#2 confirmed the markerless deletion of TK0582 and the T. kodakarensis TS-ZLE033 

genome structure diagrammed in Figure S1. The locations of BglII sites in the T. 

kodakarensis TS517 and TS-ZLE033 genomic DNA are indicated in Figure S1
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Fig. 5. 
Western-blot quantification of PCNA1 and PCNA2 abundances in vivo. The proteins in 

aliquots of clarified cell extracts, derived from the numbers of T. kodakarensis cells 

indicated, were separated by electrophoresis in lanes adjacent to samples of purified 

recombinant (a) PCNA1 and (b) PCNA2. Western blots were generated and quantified as 

described in “Materials and Methods”
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